The existence of G-invariant constant mean curvature hypersurfaces

نویسندگان

چکیده

In this paper, we consider a closed Riemannian manifold $$M^{n+1}$$ with dimension $$3\le n+1\le 7$$ , and compact Lie group G acting as isometries on M cohomogeneity at least 3. Suppose the union of non-principal orbits $$M{\setminus } M^{reg}$$ is smooth embedded submanifold most $$n-2$$ . Then for any $$c\in \mathbb {R}$$ show existence nontrivial, smooth, closed, almost embedded, G-invariant hypersurface $$\Sigma ^n$$ constant mean curvature c.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constant Mean Curvature Hypersurfaces with Constant Δ-invariant

We completely classify constant mean curvature hypersurfaces (CMC) with constant δ-invariant in the unit 4-sphere S 4 and in the Euclidean 4-space E 4 .

متن کامل

Existence of Constant Mean Curvature Hypersurfaces in Asymptotically Flat Spacetimes

The problem of existence of spacelike hypersurfaces with constant mean curvature in asymptotically flat spacetimes is considered for a class of asymptotically Schwarzschild spacetimes satisfying an interior condition. Using a barrier construction, a proof is given of the existence of complete hypersurfaces with constant mean cuvature which intersect null infinity in a regular cut. 1991 Mathemat...

متن کامل

Constant mean curvature hypersurfaces foliated by spheres ∗

We ask when a constant mean curvature n-submanifold foliated by spheres in one of the Euclidean, hyperbolic and Lorentz–Minkowski spaces (En+1, Hn+1 or Ln+1), is a hypersurface of revolution. In En+1 and Ln+1 we will assume that the spheres lie in parallel hyperplanes and in the case of hyperbolic space Hn+1, the spheres will be contained in parallel horospheres. Finally, Riemann examples in L3...

متن کامل

On the Index of Constant Mean Curvature Hypersurfaces

Abstract. In 1968, Simons [9] introduced the concept of index for hypersurfaces immersed into the Euclidean sphere S. Intuitively, the index measures the number of independent directions in which a given hypersurface fails to minimize area. The earliest results regarding the index focused on the case of minimal hypersurfaces. Many such results established lower bounds for the index. More recent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2022

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-022-02251-2